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• Our results show a paradox regarding the
relationship between adequate sanitation
and the rainfall-dengue DCCAC.

• If water sanitation improvement actions
are implemented in the city, such as
piped water and sewerage, the cross-
correlation between rainfall and dengue
increases.

• If water sanitation improvement actions
are implemented in the city, such as
piped water and sewerage, the cross-
correlation between rainfall and dengue
increases.
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Background: Dengue fever is a tropical disease and a major public health concern, and almost half of the world's pop-

ulation lives in areas at risk of contracting this disease. Climate change is identified by WHO and other international
health authorities as one of the primary factors that contribute to the rapid spread of dengue fever.
Methods:We evaluated the effect of sanitation on the cross-correlation between rainfall and the first symptoms of den-
gue in the city ofMato Grosso do Sul, which is in a state in theMidwest region of Brazil, and employed the time-lagged
detrended cross-correlation analysis (DCCAC) method.
Results: Co–movements were obtained through the time-phased DCCAC to analyze the effects of climatic variables on
arboviruses. The use of a time-lag analysis was more robust than DCCACwithout lag to present the behavior of dengue
cases in relation to accumulated precipitation. Our results show that the cross-correlation between rain and dengue
increased as the city implemented actions to improve basic sanitation in the city.
Conclusion:With climate change and the increase in the global average temperature, mosquitoes are advancing beyond
the tropics, and our results show that cities with improved sanitation have a high correlation between dengue and
annual precipitation. Public prevention and control policies can be targeted according to the period of time and the
degree of correlation calculated to structure vector control and prevention work in places where sanitation conditions
are adequate.
ovember 2022; Accepted 21 Nov
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1. Introduction

Dengue fever is a neglected tropical disease (NTD) of major public health
concern (Gubler and Clark, 1995; WHO, 2021). NTDs also include Chagas
disease, chikungunya, schistosomiasis, leishmaniasis, ectoparasitoses and
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other diseases (WHO, 2021). The U.S. Centers for Disease Control and
Prevention estimate that almost half of the world's population lives in areas
at risk of contracting dengue, with as many as 400 million people infected
with dengue virus (DENV) and 20,000 dying from severe dengue fever
every year (CDC, 2021).

DENV is transmitted by the Aedes aegypti mosquito, which belongs to
the Flaviviridae family and the Flavivirus genus and has four different sero-
types (DENV1–4) (Bhatt et al., 2013). Aedes aegypti is native to Africa, and
its larvae are found in several places, mainly in urban environments, facili-
tating the propagation of the species. The transmission of arboviruses is
complex, involving different aspects of the behavior of those infected, and
it is strongly influenced by precipitation, temperature and degree of urban-
ization (Hales et al., 2002; Bhatt et al., 2013; Liu et al., 2018; Salles et al.,
2018; Wilder-Smith et al., 2019).

The most widely used strategy to prevent dengue disease is to fight
water accumulation, which favors the reproduction of mosquitoes. The
use of insecticides and the sterilization of mosquitoes by genetic modifica-
tion are other initiatives to reduce the vector that have been used by the city
government. Although many mosquito control policies have been imple-
mented every year in Brazilian cities, the prospects for dengue control are
not promising (Salles et al., 2018). DENV remains a prevention challenge
and an important public health problem associated with morbidity, mortal-
ity and significant economic costs, particularly in developing countries
(Harapan et al., 2020).

Between 2012 and 2020, the WHO, governments, foundations, NGOs
and other institutions planned for the eradication of NTDs. NTDs can
cause multidisciplinary care needs, increasing costs and making treatment
difficult for populations located in hard-to-reach places. However, not all
goals were achieved in the planning period (The Lancet, 2022), and the
prospects for dengue control are not promising. The number of dengue
cases increases proportionally to the factors of deforestation, migration, dis-
orderly occupation of urban areas and poor sanitation and climate change.
These factors all help the propagation of the vectors of this disease, signifi-
cantly increasing the risk to populations that live in these areas (Salles
et al., 2018; Mota et al., 2016; Pasteur, 2018).

To reduce NTDs, efforts are needed to reduce poverty and improve
living conditions. Specifically, these efforts include budgetary investments
in health, water, sanitation and hygiene, and education. Moreover, food
security needs to be ensured, especially in endemic countries. In addition,
climate change, precipitation and temperature contribute to the transmis-
sion of diseases in parts of central Europe and the United States (The
Lancet, 2022). Climate change is a concern for arboviral diseases because
mosquitos can better proliferate and spread into warm zones and the
Earth continues to warm over time (Gainor et al., 2022). Warmer water
also accelerates the maturation of mosquito larvae, and warmer climates
tend to be associated with an increase in the mosquito feeding rate, provid-
ing more opportunities for virus transmission (Githeko et al., 2000). Nosrat
et al. (2021) also showed an abundance of mosquito eggs and adults after
wet months.

Not only are cases increasing because of climate change, but more out-
breaks are occurring as the disease spreads to new regions. Local transmis-
sion was first reported in France and Croatia in 2010, and imported cases
were detected in 3 other European countries. In 2012, more than 2000
cases of dengue fever broke out in the Madeira Islands, and imported
cases were found in Portugal and 10 other European countries. Autochtho-
nous cases are now observed annually in a few European countries (WHO,
2022).

Mone et al. (2019) noted that understanding the trend and evolution of
the virus over time is important given seasonal influences and the impact of
climate change. Several models have been developed to successfully
forecast dengue outbreaks by correlating dengue cases with climate
data, such as models employed in Singapore (Hii et al., 2012), China
(Guo et al., 2019), Malaysia (Jayaraj et al., 2019) and Brazil (Lowe et al.,
2014). (Franklinos et al., 2019) says that the disease investigation
should not only focus on climate change but also consider increasing
evidence of supplementary factors that modulate disease risk; for instance,
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socioeconomic factors are increasingly being recognized as important
predictors of disease transmission.

Despite all efforts to develop effective vector control measures, the gen-
eral trend in recent years in Brazil has been an increasing burden of dengue
disease. Reported cases in Brazil exceeded 1.6 million in 2016 and reached
2.1 million in 2019 (Brito et al., 2021). Brazil experienced a hyperendemic
scenariowith the co-transmission of the four DENV serotypes in 2019 and a
high occurrence of severe and fatal cases, as well as recent co-transmission
with other arboviruses, such as Zika, Yellow Fever and Chikungunya
(Nunes et al., 2019).

The mosquito usually chooses artificial reservoirs, preferring to repro-
duce in clean water to avoid exposing the larvae to the action of predators
(Varejão et al., 2005). The viability of A. aegypti is about 60 % in rainwater
and 10 % in raw sewage (Beserra et al., 2009). As dengue is a water-
associated disease, the following question arises: may the availability of
clean water and adequate sanitation influence the correlation strength
between rainfall and dengue cases?

The objective of our study was to evaluate the effect of sanitation on the
cross-correlation between rainfall and the first symptoms of dengue in
several cities of Mato Grosso do Sul (MS), a state in the Midwest region of
Brazil. This state is in an area with the highest mortality rates, and dengue
in this area was responsible for 18 % of all deaths in the country in 2015
(Nunes et al., 2019). We employed the time-lagged detrended cross-
correlation analysis (time-lagged DCCA coefficient) method to detect
nonlinear and nonstationary correlations, a behavior found in weather-
sensitive infectious disease incidences (Ehelepola et al., 2021).

2. Materials and methods

2.1. Dengue incidence, climate classifications and geographic coordinates

In the present retrospective study, notifications of the first symptoms of
dengue for confirmed cases in twelve cities in the MS were daily collected
from the database of the Sistema de Informação de Agravos de Notificação
(SINAN) through the Department of Informatics of the Unified Health System
(DATASUS) of the Ministry of Health. All records from the database with
a diagnosis of dengue (CID A90) were used in the evaluation. The
anonymized data was downloaded on 5/21/2021 and is publicly available
at (DATASUS, 2022).

MS is in the Midwest region of Brazil. It has a territorial area of
357.125 km2 (IBGE, 2021), contains 79 cities and borders five Brazilian
states and two countries (Fig. 1). It consists of three biomes, Pantanal, the
Atlantic Forest and Cerrado, that cover most of the area. Four climate clas-
sifications predominate in the state: a tropical savanna climate (Aw), a
humid subtropical climate (Cfa), a humid or super humid tropical climate
(Af) and a tropical monsoon climate (Am).

The twelve most populous cities in MS that are geographically distrib-
uted to cover the four climatic classifications of the state and in which
data from meteorological stations by INMET were available were selected
for this study.

The climate of Aw covers a vast area of Brazil (25.8 % of its territory). It
is present mainly in the central region of Brazil. It features high tempera-
tures and has seasonal characteristics, such as dry winters and summer
rains. The Am climate covers approximately 27.5 % of the Brazilian terri-
tory, making it the most representative climate in Brazil. It has a rainy
season in the summer (November to April) and a dry season in the winter
(May to October), and July is considered the driest month (Alvares et al.,
2013; Thornthwaite, 1948).

The Cfa climate covers 6.5 % of the Brazilian territory and is found
mainly in the states of the southern region of Brazil. In Mato Grosso do
Sul, this climate is found in the plateau regions, including the Pantanal
biome, in the plateaus of the Paraguay River region, where altitudes are
above 900 m. This climate classification is characterized by abundant and
distributed precipitation throughout the year. The Af climate is found in
22.6 % of the territory, covering 82.3 % of the state of Amazonas. In
Mato Grosso do Sul, the Af climate is found in the Pantanal, and it always



Fig. 1.Map of the state ofMatoGrosso do Sulwith climate classification, limits and studied cities followed by timeline graphswith themonthly incidences of thefirst reported
symptoms of confirmed dengue cases per 100,000 inhabitants between 2013 and 2020.
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occurs at altitudes below 400 m, with annual rainfall between 1.400 and
1.800 mm. The Af climate is dry in the summer, with winter and autumn
rains and high temperatures (Alvares et al., 2013; Thornthwaite, 1948).

We chose the MS state because it has a mid-high incidence of dengue
fever (Brito et al., 2021) and a severe dengue fatality rate that exceeded
61–80% in 2015 (Nunes et al., 2019). It also has four different climate clas-
sifications (Fig. 1) and several economic and social profile differences
within its cities (see Supplementary Material).
Table 1
Sanitary indicators analyzed.

City/Koppen Piped water (%) Sewerage (%)
2.2. Precipitation data

For the accumulated rainfall, the data were collected from the Instituto
Nacional de Meteorologia (INMET) database. As a complementary support,
we used the records ofNASA The Power Project for cases in which this infor-
mation was not available (NASA, 2022). For instance, this method of filling
gaps has already been used in other research on the performance of gap-
filling methods of meteorological data for the western region of Paraná
(Giovanella et al., 2021) and to estimate daily solar radiation data for the
continental United States (White et al., 2011). Our model uses the daily
accumulated rainfall for each city.
Amambai (Cfa) 63.78 25.76
Aquidauana (Am) 77.97 11.77
Bela Vista (Af) 91.75 23.93
Campo Grande (Am) 98.66 82.88
Corumbá (Aw) 89.21 51.08
Dourados (Am) 91.41 70.6
Maracajú (Am) 85.99 22.64
Nova Andradina (Aw) 84.23 23.93
Paranaíba (Aw) 88.07 67.67
Ponta Porã (Cfa) 78.91 51.91
Sidrolândia (Am) 65.28 4.71
Três Lagoas (Aw) 94.41 89.97
2.3. Sanitation data

Unique data on health indicators of 2020 were collected from the
MUNICÍPIOS E SANEAMENTO platform with data from the main official
sources, downloaded on 2022-19-04 (IAS, 2022).

The piped water indicator consists of the activities, infrastructure and
facilities necessary for the supply of water from the capture to the building
connections and respective measuring instruments. The sewerage indicator
consists of the activities, infrastructures and operational installations of
3

adequate collection, transport, treatment and final disposal of sanitary sew-
age, from the building connections to the final release into the environment.

Table 1 shows the values, in percentages, of the indicators for 2020 for
the analyzed cities.

2.4. Detrended cross-correlation analysis

The dispersal of DENV and other arboviruses is considered a complex
system (Salles et al., 2018; Harapan et al., 2020). The analysis of dengue
fever as a nonlinear system can contribute to the understanding of the
behavior of this disease (Murari et al., 2021). The assumption of station-
arity of random variables in the time series is necessary to perform several
mechanisms of statistical inference (Al Salameen et al., 2020), and nonsta-
tionary data make Pearson's correlation coefficient an inefficient method
for identifying true correlations on different time scales (Piao and Fu,
2016; Kristoufek, 2014).



Table 2
Cross correlation coefficient ranges, based on:(Zebende
et al., 2018).

Condition ρDCCA

Weak ±0.000 → ±0.333
Medium ±0.333 → ±0.666
Strong ±0.666 → ±0.999
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Unlike Pearson's coefficient, the DCCA coefficient (DCCAC) can estimate
the true correlation coefficient between series despite the nonstationarity
strength of the data (Kristoufek, 2014). DCCA-related methods are both
more robust to contaminated noises and less sensitive to the amplitude
ratio between slow and fast components than the Pearson method (Piao
and Fu, 2016).

Due to the nonstationarity of the spread of dengue (Nascimento Filho
et al., 2018; Saba et al., 2014) and the known time-lag condition between
weather conditions and dengue cases (Hii et al., 2012; Ehelepola et al.,
2015; Jayaraj et al., 2019; Gagnon et al., 2001), the time-lagged DCCA
coefficient was employed in this study. Time-lagged generally refers to the
correlation between two-time series relatively displaced in time (Shen, 2015).

Time-lagged DCCAC (Shen, 2015) can be considered a generalization of
the nontrend cross-correlation analysis schemes. Based on DCCA, the time-
lagged DCCA was developed to measure the strength of time-lagged cross-
correlations between two nonstationary time series (Xk and Yk) at different
time lags, recognizing that the largest correlation occurred at lags of Xk,
which may support the prediction of Yk (Ehelepola et al., 2021). This
method has been applied in different areas, such as in meteorological
time series (Malik et al., 2018; Nogueira, 2019; Shen, 2015) and public
health issues (Ehelepola et al., 2021).

2.4.1. Time-lagged DCCAC method
DCCAC was proposed and implemented by Zebende (Zebende, 2011)

and can identify the level of cross-correlation based on detrended fluctua-
tion analysis (DFA) (Peng et al., 1994) and detrended cross-correlation
analysis (DCCA) (Podobnik et al., 2011). Specifically, it has been applied
to astrophysics (Zebende et al., 2005; Moret, 2014), biological process
(Figueiredo et al., 2010), climate (Santos et al., 2019) and epidemic data
series (Azevedo et al., 2016). The objective of this method is to create a
scale to quantify the level of cross-correlation between nonstationary time
series. Analyzing the fluctuations allows us to ascertain the characteristics
of the evolution of dengue that are not evident compared to traditional
statistical methods.

We calculated the cross-correlation by applying the DCCAC statistical
method with a lag calculation to evaluate the relationship between the
notifications of the first symptoms of dengue in the population and precip-
itation information between 2013 and 2020 for the twelve most populous
cities in the state of Mato Grosso do Sul according to the climatic classifica-
tions of the state: tropical savanna climate (Aw), tropical monsoon climate
(Am), humid subtropical climate (Cfa) and humid or super humid tropical
climate (Af). The analysis of the time-phased cross-correlations between
nonstationary time series can be useful to better understand the influence
of rain on the notifications of dengue in a city.

Research into cross-correlations with lags has been ongoing for several
years. Studies with lagged DFA for nonstationary time series have found
greater correlations in positive lags (Alvarez-Ramirez et al., 2009). Using
the DCCA method, researchers have studied the dynamics of cross-
correlations involving the stock market with a time delay (Lin et al., 2012).

First, we calculated the DCCAC, idealized by Zebende (Zebende, 2011).
This coefficient can quantify the level of cross-correlation based on the DFA
and the DCCA. This coefficient is calculated according to the following
equation (Eq. (1)):

ρDCCA nð Þ ¼ F2
DCCA

FDFA yð Þ nð Þ � FDFA y0ð Þ nð Þ ð1Þ

ρDCCA is a dimensionless coefficient with a variation interval between−1
and + 1, which are interpreted as follows:

• ρDCCA= 0: indicates no cross-correlation between the analyzed series;
• ρDCCA= +1 indicates a perfect cross-correlation;
• ρDCCA= −1 indicates perfectly anticorrelated.

To analyze the results, the statistical test in which the correlation was
significant was considered. Specifically, the values in the scatter plots that
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are outside the lines (upper and lower) represent a significance of 95 %,
with the hypothesis test H0: ρDCCA= 0 and H1: ρDCCA≠ 0. The coeffi-
cients were classified as weak, medium or strong to describe the results,
and the discussion in this research was based on the work of (Zebende
et al., 2018) (Table 2):

The DCCAC calculates the covariance of the residuals in each box of size
n. The time lag calculates the lagged covariance of the residuals in each box
of size n between two-time series, and the average lagged covariance over
all N - n - ∣τ∣ boxes. We implemented the lagged DCCAC. τ was used to
denote the time interval and can be positive or negative. In general, a
positive τ indicates that Y(k + τ) lags Xk, whereas a negative τ means that
X(k + τ) lags in Yk (Shen, 2015).

Studies using the time-lagged DCCAC have been used in several areas,
such as in oil and gas production forecasts (de Oliveira Werneck et al.,
2022), in engineering operations in the district heating system (Sun et al.,
2021), in economic studies of the relationship between the uncertainty of
economic policy and the future price of oil (He et al., 2021), and in the
stock market (Ren et al., 2020), among others.

In this study, the calculations of DCCAC were applied for different time
lags as follows: 0, 15, 30, 45, 60 and 75 days (lag 0, lag 15, lag 30, lag 45,
lag 60, and lag 75, respectively). This lag period is related to the mosquito
development cycle, such as the development of breeding sites, the evolu-
tion of vectors, the transmission process, and the incubation period, as
well as the diagnosis and notification of the disease (Duarte et al., 2019;
Guzman and Harris, 2015).

3. Results and discussion

We calculated the DCCAC between the accumulated precipitation and
time-lagged notifications of the first symptoms of dengue for the cities of
Maracajú, Dourados, Sidrolândia, Aquidauana and Campo Grande, which
belong to the climate classification Am. This parameter was also calculated
for Amambai and Ponta Porã, which belong to the Cfa climate classifica-
tion, and Bela Vista, which belongs to the climate classification Af. Lastly,
this parameter was also calculated for the cities of Nova Andradina,
Corumbá, Paranaíba and Três Lagoas, which are under the climate classifi-
cation Aw according to the Map 1 (see Supplementary Material).

Based on the time-lagged DCCAC, we verified that there are significant
values, up to amedium correlation range, between the accumulated precip-
itation and the notifications of the first symptoms of dengue, with particu-
larities in each city. However, the highest DCCAC values occurred for a n of
1 year for all cities, indicating that the time series represented a long-range
dependence.

In Dourados, the time-lagged DCCAC values became significant
after the 100th day, and the highest correlation occurred within the n of
362 days. The highest coefficient occurred between lags of 45 and
75 days, reaching a maximum value of 0.640 for a lag of 75 days, which
is considered moderately (Fig. 2).

The city of Nova Andradina presented the lowest DCCAC values in our
research. Only the lags of 45, 60 and 75 days presented significant values.
The highest value of the coefficient in Nova Andradina occurred at a lag
of 75 days. The DCCAC value was 0.306, which is considered a weak
cross-correlation (Fig. 3).

Unlike the other cities analyzed, the highest values in Três Lagoas for
the time-lagged DCCAC occurred for a lag of 0, with a value of 0.429 occur-
ring between n 200 and 400. This value represents a moderate cross-
correlation (Fig. 4).



Fig. 2.Dourados - CorrelationMID-HIGH: DCCACvisual results. (a) Contour graph, with a gradual color scale, where blue represents the lowest correlation and red represents
the highest correlation. (b) Line graph with time-lagged DCCAC results for the city, with a 95 % confidence interval, where the x-axis represents the n (days) calculated
according to the size of the time series.
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Although the relationship between precipitation and the first symptoms
of dengue differed in each city based on correlation values found with the
calculated DCCAC and the rainfall cycles, we observed in Fig. 5 that the
highest correlation values occurred from one year onward (n of 362 days).
The beginning of plateau start in the box of 362 days. This box size may
be also representative of typical annual precipitation. Based on these results,
we selected the highest DCCAC values for any time lag where n is equal to
362 for each city. This coefficient was used to evaluate the relationship
between dengue, rainfall and the socioeconomic indicators of sanitation.

Regarding precipitation, some studies have reported a time lag and the
optimal time cycle for the correlation between rainfall and dengue disease.
Hii et al. (2012) revealed a negative relationship between rainfall and
dengue from weeks 0 to 22, and their study showed that a model with a
5

weather time cycle of 20–24weeks at a lag term of 16weeks performed bet-
ter than other lag setups. Jayaraj et al. (2019) also found a negative associ-
ation between rainfall and dengue, with a lag of 5–6months of dry weather
observed prior to the spike of dengue cases. The same behavior was found
in Sri Lanka (Ehelepola et al., 2015) and Indonesia (Gagnon et al., 2001).

However, rainfall positively correlated with dengue in Malaysia
(Cheong et al., 2013) for lags of 4–8 weeks and South America
(Colombia, French Guyana, Indonesia, and Suriname) (Gagnon et al.,
2001) for lags of 1 month and 2–4 weeks. This time lag may be explained
by the effects of weather conditions on the lifecycle of the Aedes aegypti
mosquito as it matures from an egg into an adult, including prolonged
egg hatching and the tendency ofAedes aegypti eggs to survivemonthswith-
out water (Hii et al., 2012; Sota and Mogi, 1992; Fouque et al., 2006).



Fig. 3. Nova Andradina - Correlation LOW: DCCAC visual results. (a) Contour graph, with a gradual color scale, where blue represents the lowest correlation and red
represents the highest correlation. (b) Line graph with time-lagged DCCAC results for the city, with a 95 % confidence interval, where the x-axis represents the n (days)
calculated according to the size of the time series.
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Our results show the absence of a unique time-lag range, confirming the
analyzed studies. Therefore, models with the goal of forecasting dengue
andmodels that consider rainfall may be adjusted to the climatic conditions
of the region or city analyzed. A better understanding of this correlation be-
tween rainfall and dengue is relevant to improve future forecasts of dengue
fever outbreaks.

We also built a hierarchical cluster diagram that considered the highest
DCCAC value for the n of 362 days and the sanitary indicators of piped
water and sewerage percentile available to the population (Fig. 6). We
have conducted the evaluation of the distances between rows using
Mahalanobis. Two large groups can be observed for a height ratio of
100 %, where C1 consists of only 3 cities of the climatic classification Aw.
6

The C2 group consists of all other cities (climate classifications Cfa, Am,
Af and the city of Paranaíba (Aw)).

Paranaíba differs from other Aw cities in terms of monthly rainfall,
although it is part of the same climate classification. This difference is
also highlighted by (Abreu et al., 2021); this study used adjusted polyno-
mial models to estimate the average monthly precipitation and reported
that the influence of meteorological systems that form over the Amazon
region may affect the area of the city of Paranaíba.

The effect of the piped water percentile available to the population in
each city on the cross-correlation between rainfall and the first symptoms
of dengue is shown in Fig. 7. The factors exhibit a positive visual correla-
tion: an increase in the available piped water increased the correlation



Fig. 4. Três Lagoas - CorrelationMID: DCCAC visual results. (a) Contour graph,with a gradual color scale, where blue represents the lowest correlation and red represents the
highest correlation. (b) Line graphwith time-laggedDCCAC results for the city, with a 95% confidence interval, where the x-axis represents the n (days) calculated according
to the size of the time series.
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index between rain and dengue. The Pearson correlation for the C2 cluster
was 0.679, indicating statistical significance.

The effect of an adequate sewerage system is similar to that of piped
water availability in the city. An increase in the availability of sewage sys-
tems for the population of the city also increases the cross-correlation
index between rain and dengue (Fig. 8). The Pearson correlation between
the sewerage and DCCAC results was 0.829 for the C2 cluster, and this cor-
relation was also statistically significant. Research related to sewerage and
dengue cases may explain these results. The quality of water reservoirs can
influence the lifecycle of A. aegypti. The mosquito has a predilection for
artificial reservoirs, preferring to reproduce in clean waters to avoid expos-
ing the larvae to the action of predators (Varejão et al., 2005). For instance,
7

the viability of A. aegypti larvae is only 10 % in raw sewage and more than
60 % in rainwater and dechlorinated water (Beserra et al., 2009).

4. Conclusions

Themain contribution of this work is to extend the application of the co-
movements obtained through the time-lagged DCCAC for the analysis of
the effects of climatic variables on arboviruses. The use of a time lag analy-
sis providedmore information than DCCACwithout lag to represent the be-
havior of dengue cases in relation to accumulated precipitation for different
climatic classifications and geographic locations, for instance, the begin-
ning and duration, in days, in which the highest correlation indices occur.



Fig. 5. Average DCCAC values for all n from 224 to 576. The DCCAC starts to decay after n of 407 days. The vertical line with horizontal lines represents one standard error
from the mean.
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The analysis primarily showsweak tomediumDCCAC results for a time lag
of 60 days with long-rangememory. Long-range cross-correlations between
two-time series suggest that each series independently has a long memory
of its own previous points and a long memory of preceding points of the
other time series (Podobnik and Stanley, 2008).

The results show significant differences in the cross-correlation between
rainfall and dengue for cities in different Köppen-Geiger climate classifica-
tions. The cities of Três Lagoas, Corumbá and Nova Andradina, which are
all in Aw, exhibited different behavior than all other cities in the state.
These cities have high temperatures and seasonal characteristics, such as
dry winters and summer rains. The other evaluated cities have distributed
rainfall throughout the year.

Poverty, high urbanization, poor hygiene and poor sanitation are some
of the known factors that contribute to the propagation of dengue (Salles
Fig. 6.Hierarchical clustering of all studied cities for DCCAC, piped water and sewerage p
and Nova Andradina, whereas all other cities are part of the C2 cluster for a height ratio
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et al., 2018; Pasteur, 2018; Mota et al., 2016). This study presents a new
paradox in the relationship between adequate sanitation and rainfall-
dengue DCCAC. Our results show a rise in the cross-correlation between
rainfall and dengue as water sanitation improvement actions are imple-
mented in the city, such as piped water and sewerage. Therefore, sewage
drainage seems to be a favorable habitat for A. aegypti, as the continuous
availability of water in sewage drains and septic tanks make permanent
habitats for vector reproduction (Pasteur, 2018; Mota et al., 2016).

Because dengue is strongly influenced by precipitation, temperature
and degree of urbanization, the presented result for water sanitation is
limited for the studied region and should be interpreted cautiously. For
instance, the average temperature is constant within the studied cities
fromNovember to April, the dengue fever season in the region. The average
temperature is above 17 °C and below 30 °C, inside the temperature range
ercentile available to the population. The C1 cluster consists of Três Lagoas, Corumbá
of 100 %. The X axis is the height that indicates the distance between the objects.



Fig. 7. The effect of piped water percentile on the cross-correlation between rainfall and the first symptoms of dengue.
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for the A. aegypti viability (Reinhold et al., 2018). On the other hand, the
monthly accumulated precipitation variation is significant in the same pe-
riod. Future studies may evaluate other regions of Brazil in order to deter-
mine whether the rise in DCCAC between rainfall and dengue is similar to
that found in MS after the implementation of water sanitation actions.

Different public policies for dengue prevention and vector control can
be effectively targeted to each city according to the time period and the de-
gree of correlation calculated. In addition to improving sanitation, working
on the behavior of the population that will use this benefit and having com-
petent authorities are important to structure vector control and prevention
work in places where sanitation conditions are adequate.

With climate change and the increase in the global average temperature,
mosquitoes are advancing beyond the tropics (WHO, 2021; Bhatt et al., 2013;
Harapan et al., 2020). Thus, urbanized cities in other places, such as Europe
and the United States, are presently at risk for dengue cases in the coming
Fig. 8. The effect of sewerage percentile on the cross-correla
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years. Specifically, our results show that cities with a high level of sanitation
may have a high correlation between dengue and annual precipitation.
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